Microchip DN2540 Type N-Channel MOSFET, 170 mA, 400 V Depletion, 3-Pin TO-243

Mängdrabatt möjlig

Antal 30 enheter (levereras på en kontinuerlig remsa)*

296,34 kr

(exkl. moms)

370,44 kr

(inkl. moms)

Add to Basket
välj eller skriv kvantitet
I lager
  • Dessutom levereras 1 580 enhet(er) från den 06 februari 2026
Behöver du mer? Ange den kvantitet du behöver och klicka på "Kontrollera leveransdatum"
Enheter
Per enhet
30 - 909,878 kr
100 +8,915 kr

*vägledande pris

Förpackningsalternativ:
RS-artikelnummer:
177-3294P
Tillv. art.nr:
DN2540N8-G
Tillverkare / varumärke:
Microchip
Hitta liknande produkter genom att välja ett eller flera attribut.
Välj alla

Brand

Microchip

Product Type

MOSFET

Channel Type

Type N

Maximum Continuous Drain Current Id

170mA

Maximum Drain Source Voltage Vds

400V

Series

DN2540

Package Type

TO-243

Mount Type

Surface

Pin Count

3

Maximum Drain Source Resistance Rds

25Ω

Channel Mode

Depletion

Maximum Gate Source Voltage Vgs

20 V

Forward Voltage Vf

1.8V

Maximum Power Dissipation Pd

1.6W

Minimum Operating Temperature

-55°C

Maximum Operating Temperature

150°C

Height

1.6mm

Standards/Approvals

No

Width

2.6 mm

Length

4.6mm

Automotive Standard

No

COO (Country of Origin):
US
DN2540 is a low threshold depletion mode (normally-on) transistor utilizing an advanced vertical DMOS structure and well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown. Vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Additional Features:

High input impedance

Low input capacitance

Fast switching speeds

Low on-resistance

Free from secondary breakdown Low input and output leakage